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The statistical properties of the strong coherent vortices observed in numerical sim-
ulations of isotropic turbulence are studied. When compiled at axial vorticity levels

ω/ω′ ∼ Re
1/2
λ , where ω′ is the r.m.s. vorticity magnitude for the flow as a whole,

they have radii of the order of the Kolmogorov scale and internal velocity differences
of the order of the r.m.s. velocity of the flow u′. Theoretical arguments are given
to explain these scalings. It is shown that the filaments are inhomogeneous Burgers’
vortices driven by an axial stretching which behaves like the strain fluctuations of the
background flow. It is suggested that they are the strongest members in a class of co-
herent objects, the weakest of which have radii of the order of the Taylor microscale,
and indirect evidence is presented that they are unstable. A model is proposed in
which this instability leads to a cascade of coherent filaments whose radii are below
the dissipative scale of the flow as a whole. A family of such cascades separates the
self-similar inertial range from the dissipative limit. At the vorticity level given above,
the filaments occupy a volume fraction which scales as Re−2

λ , and their total length
increases as O(Reλ). The length of individual filaments scales as the integral length of
the flow, but there is a shorter internal length of the order of the Taylor microscale.

1. Introduction
This paper is devoted to the analysis of the coherent vortices that are known to

exist among the small scales of many turbulent flows, and is a continuation of the
previous one by Jiménez et al. (1993, referred to hereafter as JWSR). That paper was
devoted to the statistical properties of small-scale vorticity, and paid some attention
to its structural aspects. It had been found at the time that small-scale vorticity was
organized in the form of vortex filaments, and one of the goals of the paper was
the identification of scaling laws for their properties. The filaments had first been
found in numerical simulations by Siggia (1981), although they had been suggested
earlier from laboratory experiments by Kuo & Corrsin (1972). Several numerical and
experimental investigations had confirmed their existence (see JWSR for a list of
references up to 1992), but it was in JWSR that they were first studied over a range
of Reynolds numbers wide enough to establish their scaling properties. This led to
contradictions with the assumptions of some of the previous investigators, and to a
number of theoretical problems.

There were three main outstanding issues. In the first place it was found that the
radius of the vortices was proportional to the Kolmogorov microscale of the flow η,
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while most previous work had favoured radii of the order of the Taylor microscale
λ. At the low Reynolds numbers of the simulations both scales are difficult to tell
apart, but they vary in different ways with the Reynolds number, and the scaling
found in JWSR was unequivocal. This raised a theoretical question, since these radii
implied that the vortices were being stretched by strains of the order of the r.m.s.
flow vorticity, ω′, and it was difficult to understand how such strong strains could be
coherent over distances of the order of the length of the vortices, which were known
to be much longer than the Kolmogorov scale.

The second problem was the intensity of the vortices, which was found to require
azimuthal velocities of the order of the large-scale r.m.s. velocity of the flow. Since
the latter is a property of the large scales of the flow, while the former occur across
distances of the order of the Kolmogorov scale, it was difficult to understand how
one could influence the other.

Finally, it was noted in JWSR that the two previous scalings implied that the
internal Reynolds number of the vortices was high, and increased with the Reynolds
number of the flow, suggesting that they might be transitional phenomena associated
with low Reynolds number turbulence, and that they should eventually become
internally unstable and disappear when the Reynolds number of the flow was high
enough.

These and other inconsistencies have motivated a lot of work since that time. The
formation of the filaments was studied by Vincent & Meneguzzi (1994) and by Passot
et al. (1995), who concluded that they were formed by instabilities of existing vortex
sheets. The filaments themselves were studied experimentally by Cadot, Douday &
Couder (1995) and by Abry et al. (1994) by analysing the low pressures in their cores.
Belin et al. (1996) confirmed the presence of velocity fluctuations of the magnitude
and length scale mentioned above at Reynolds number much higher than those in
simulations (Reλ = 700), and the same was done using optical techniques by Noullez
et al. (1997). Although these are one-point one-component velocity measurements
from which it is difficult to conclude the geometry of the structures, they are at least
consistent with vortex filaments which scale in the same way as in the simulations.
Y. Malecot (1997, private communication) analysed two-component velocity mea-
surements from a jet at Reλ = 800, and found events consistent with filaments with
radii and velocities very similar to those of the simulations. The constraints on a two-
component signal are much stronger than those on a one-component one, and there
is little doubt that the structures found in that case are vortices. New simulations at
Reynolds numbers comparable to those in JWSR were done by Tanahashi, Miyauchi
& Ikeda (1997) in isotropic turbulence, and by Tanahashi, Miyauchi & Matsuoka
(1997) in a turbulent shear layer. Although their vortex identification technique is
very different from that in JWSR their results agree with the older ones within a
few percent. A compilation of the results obtained to date for the vortex scalings
can be found in Jiménez (1997). An important theoretical advance was achieved by
Verzicco, Jiménez & Orlandi (1993, referred to hereafter as VJO), who studied the
dynamics of vortices subject to non-uniform, spatially periodic, strains, and were able
to suggest explanations for the velocity and radius scalings mentioned above. The
same group has extended their conclusions to more general stretching laws which
better approximate those found in turbulence (Verzicco & Jiménez 1997).

In spite of all this work, which broadly confirms the results of JWSR, the data
in that paper still include the highest Reynolds number simulations available for
the study of the vortex filaments. The purpose of the present paper is to use them,
slightly extended, to address the questions posed at the beginning of this introduction,
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Reλ N Lε L/Lε t/T R/η R/Rb ω0/ωf u0/u
′ Nf Nw

37 64 1.8 1.09 54.2 4.8 0.92 0.34 0.99 6 174
62 128 2.2 0.80 9.3 4.9 0.94 0.31 0.91 6 357
95 256 2.0 0.72 8.2 4.8 0.95 0.30 0.86 4 396

142 384 2.4 0.73 5.9 4.9 1.01 0.30 0.86 5 344
168 512 2.4 0.69 5.1 4.8 1.03 0.33 0.92 2 122

◦ 163 512 2.2 0.69 7.1 4.8 1.05 0.35 0.99 1 58
4 62 512 0.36 1.31 — 4.9 0.82 0.42 1.21 1 159

Table 1. Numerical and flow parameters for the simulations analysed in this paper. t/T is the
total run time in eddy-turnover units, L is the integral scale and Lε = u′3/ε is the eddy-dissipation
scale. The size of the computational box is 2π. The next-to-last line is the 5123 data set which has
been discarded in most cases, as explained in the text. The last one is the decaying field. The last
six columns refer to filament tracking results discussed in § 4. Nf is the number of fields used for
tracking, and Nw is the number of individual filaments identified.

including the theoretical suggestions in VJO, as well as other open questions related
to the structure of the filaments. Foremost among those is the question of the relative
importance of the filaments in the flow as a whole, and their relation, if any, with
the intermittency properties of turbulence. On this last subject two recent surveys
have to be mentioned: the phenomenological one by Sreenivasan & Antonia (1997)
and the more theoretical book by Frisch (1995). Two earlier publications by our
group constitute interim reports on the results in the present paper (Jiménez & Wray
1994a, b).

The organization of the paper is as follows. In the next section the numerical
simulations are described, followed in § 3 by a description of the details of the vortex
tracking procedure. The statistics obtained on the filaments are described in § 4,
including local properties, filament lengths and relative volume fractions. A discussion
follows, including the indirect evidence for the existence of a coherent cascade beyond
the Kolmogorov limit, and its interpretation in relation to the multifractal model
of turbulence. A subsection discusses possible experimental checks of the proposed
model. The paper ends by offering conclusions and a list of open problems.

2. Numerical simulations
The simulations used in this paper are essentially those in JWSR, but a new

intermediate Reynolds number has been added, and most of them have been continued
for longer times to improve the statistics. The spectral numerical scheme (Rogallo
1981) and other parameters are described in JWSR, which should be consulted for
the detailed definitions of the different quantities (Batchelor 1953). With the single
exception described below, all the simulations are forced at the wavenumbers for
which k = |k| 6 2.5 to achieve a statistically stationary state with a fixed value for
kmaxη. The two lower Reynolds numbers have been repeated at doubled resolution to
check for possible scaling artifacts. All the simulations (at kmaxη = 2) are summarized
in table 1.

The limited range of forced wavenumbers maximizes the attainable Reynolds
number, but introduces a large variability in the statistics, with a characteristic time
scale of the order of the eddy-turnover time. For example the value of Reλ varies
almost 10 % within a given simulation. It follows from standard Kolmogorov theory
that the smaller flow scales vary faster than the larger ones, while the cost of running
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a simulation increases with the fourth power of the linear size of the computational
grid, mostly due to the modes needed to represent the smallest scales. To save
computational resources most flows were run for long times at kmaxη = 1, and the
resolution was doubled at intervals of one or two turnover times. The flow was then
run at kmaxη = 2 for 0.3–0.5 turnover times, and the final field was stored for analysis.
That the evolution of the large scales was only weakly affected by this procedure was
tested independently in a pair of simultaneous computations on 1283 and 2563 grids.
The evolution times given in the table are low-resolution ones. The number of fields
stored and analysed varies from about 10 for the lower Reynolds numbers to 3 for
the highest one.

In the latter case, the small number of fields results in serious statistical uncertain-
ties; two of the fields agree with each other and are in line with the scalings suggested
by the other Reynolds numbers, but the third is substantially more intermittent. The
tails of the p.d.f.s of its velocity gradients are almost an order of magnitude larger at
the 10−7 level than the average of the two other fields. Note that this probability level
corresponds to the difference of finding high activity in a region of 23 or 43 grid points
in a 5123 field. The rest of this paper deals with events at the 10−3–10−4 probability
level. A comparable violent event is observed in the Reλ = 64 computation, where
it has a duration of a fraction of one turnover time in a simulation of over 50. Its
effects can be seen as a bulge in the tail of the probability distribution of the vorticity
in figure 7. These events probably represent an intermittency class which occurs too
seldom to be studied with our limited statistical samples. If we assume that the small
scales are independent of each other when their separation is larger than about 10η,
which is the wavelength beyond which the velocity spectrum looses its power-law be-
haviour, our samples are roughly equivalent to one-dimensional signals with lengths
between 105η and 106η.

The anomalous 5123 field has not been used in most of the statistics presented in
this paper, since it would probably bias rather than complete them, but it has been
included as an independent case in those figures in which it differs substantially from
the mean, to give an idea of the uncertainty in the present conclusions.

One decaying field is included in our analysis to isolate possible spurious effects of
the forcing on the properties of the filaments. It is a simulation at somewhat reduced
resolution which was started from an uncorrelated random field at Reλ ≈ 950 and
allowed to decay (Wray 1997). By the time it reached Reλ = 62, its resolution had
improved to kmaxη = 1.4 and it could be compared to our forced case at the same
Reynolds number.

3. Vortex tracking
The procedure for tracking the axes of the vortex filaments is described in the

appendix to JWSR. Briefly the algorithm follows lines along which the vorticity
magnitude has a local maximum on the (3 × 3 grid points) normal plane, and
computes a local radial distribution of the azimuthally averaged axial vorticity, fitting
it to

ω = ω0 exp(−r2/R2). (3.1)

Figure 1(a) presents probability distributions for the relative approximation errors. It
was shown by Jiménez & Wray (1994a) that the vortex filaments identified in this
way are subject to axial compression along a substantial percentage of their axis,
and it is of interest whether the Gaussian model, which is normally associated with
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Figure 1. (a) Distribution of the r.m.s approximation error of the Gaussian model for the radial
vorticity profile, computed inside a circle of radius 2R, and normalized with the local ω0. ,
Reλ = 37; , Reλ = 142; and are distributions for the same Reynolds numbers,
but only for axially compressed points. (b) Mean axial vorticity profile for the filaments, as a
function of the Reynolds number, when each axial location is normalized with its local radius
and central vorticity. Lines as in table 1. The circles are the Gaussian profile. 4 , standard
deviation with respect to the mean, averaged over all Reynolds numbers. The dashed line which
closely matches the standard deviation is (3.3).
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axially strained vortices, can also be applied at those points. In the figure we have
included the error distributions for the axially compressed points, in addition to those
computed over the full filament, and it is seen that the model is still adequate for
them. Corresponding to these low errors, the radial profile of axial vorticity, when
averaged along the filaments, fits well the Gaussian assumption for all the Reynolds
numbers in our simulations, as shown in figure 1(b). The figure also gives the standard
deviation of individual profiles with respect to their axial mean.

Note that the foregoing discussion refers to the azimuthally averaged vorticity
profiles. Individual sections of the filaments have larger local deviations from the
Gaussian profile, and there is no implication in our data that the filaments are either
exactly Gaussian or axisymmetric. In fact, since it follows from much of the evidence
in this and in previous papers that filaments are especially intense instances of the
general vorticity fluctuations, it should be expected that the magnitude of the local
fluctuations with respect to the mean has a standard deviation of the order of ω′

which, for Reλ ≈ 100, is of the order (see JWSR and figure 3c)

ω′ ≈ 4Re
−1/2
λ ω0 ≈ 0.4ω0. (3.2)

This is especially true of the outer part of the profiles in figure 1, beyond r ≈ R,
where the average vorticity falls below ω′ and the filaments merge into the general
turbulent background. Fluctuations of this order can be seen in the vorticity trace
across a filament shown in figure 17 of Vincent & Meneguzzi (1991), even though it
is easy to check that the structure itself, which is about three times more intense, is
well approximated by a Gaussian.

Azimuthal averaging smooths these fluctuations over 2πr/∆x points, where ∆x ≈
1.5η is the spacing of the collocation points, and the expected standard deviation of
the azimuthally averaged profiles with respect to their global mean is

∆ω

ω0

≈ 4(2πReλr/∆x)−1/2. (3.3)

This estimate has been included in figure 1(b), and agrees well with the observations.
Note that filaments can only be expected to be coherent at those locations in which

ω0 > ω′. As the Reynolds number decreases, the background fluctuations become of
the same order as the maximum expected vorticity in the filaments, and the latter lose
their individuality. It follows from (3.2) that this occurs approximately for Reλ < 30,
and experiments below this limit (e.g. Vassilicos & Brasseur 1996) are probably not
relevant to the structures analysed here.

In our analysis, points at which the relative error is larger than 0.1 are discarded
during postprocessing. So are points at which no solution exists to the fitting equations
or where the computed radius is too large (> 30η), as well as those belonging to
filaments which are shorter than an arbitrary limit of 20 grid points. All these
procedures account for the loss of between 20% and 30% of the points originally
identified by the tracker, of which 8%–12% are rejected due to large fitting errors,
and the rest mostly in the form of short filaments. In addition, after all the filaments
have been processed and assigned a radius, it is occasionally found that the tracker
has identified the outer part of some of them as independent weaker structures, which
are discarded. The percentage of points lost in this way ranges from less than 2% at
the highest Reynolds number, where strong filaments are clearly differentiated from
each other and from the background, to almost 40% at the lowest one. Statistics
obtained over the remaining sample of filament axes are presented below, but one
consideration must first be explained.
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Figure 2. Maximum axial vorticity for individual filaments, as a function of the accumulated
filament length, counted from the beginning of the tracking algorithm. Lines as in table 1.

In the implementation used in this paper the tracking algorithm runs for whichever
is the longest allowable time at the particular computer in which the simulation
resides, and there is no provision for the search to be restarted. Since the simulations
at the different Reynolds numbers generate files of very different sizes, this proce-
dure implies a more thorough search for the lower Reynolds numbers than for the
higher ones, and that difference cannot be fully compensated by varying the search
time.

The question is of some importance because there does not seem to be a natural
definition for which vorticity structures should be considered as ‘intense’, besides
being stronger than ω′. The tracking algorithm naturally orders filaments in terms
of the highest vorticity found anywhere along their axes, with the most intense ones
being found first, as shown in figure 2, which displays the maximum vorticity within
each individual filaments as a function of the filament length accumulated since the
beginning of the search. The statistics obtained from a short search are therefore
different from those obtained from a longer one.

The effect on the statistics is not as severe as it appears at first sight, both because
the vorticity along each filament is not uniform and its statistics therefore reflect
part of the vorticity distribution over the whole sample (JWSR), and because the
dependence of the maximum vorticity is only logarithmic on the accumulated length,
but the bias is real and should be kept in mind when considering the statistics below.
The question of which percentage of the filaments is represented in each sample
will be discussed below, when we consider the volume filled by the intermittent
vorticity.
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Figure 3 (a,c). For caption see facing page.

4. Statistical properties of the filaments
4.1. Local properties

At each point along the detected filaments the tracker computes a local radius R, a
maximum vorticity magnitude ω0 = |ω|, and an axial stretching σ0 = ω0 · S · ω0/ω

2
0 ,
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Figure 3. P.d.f.s of filament properties. (a) Radius normalized with the Kolmogorov scale. (b) Radius
normalized with the local Burgers’ radius. (c) Maximum axial vorticity. (d) Maximum azimuthal
velocity.

where S is the rate of strain tensor. Assuming that the vorticity profile is Gaus-
sian the local maximum azimuthal velocity is estimated as u0 = 0.319ω0R. The
p.d.f.s of these quantities are shown in figure 3. They have been normalized in
the way suggested in JWSR, and the collapse is excellent. Their mean values are
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azimuthal velocity versus radius. Lines as in table 1. The dashed curve in (a) is the Burgers’ radius.
Two probability isolines are included for each case, p2 = 10−1 and p2 = 10−3.
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summarized in table 1. In figure 3(b) we show, for those points at which σ0 > 0,
the p.d.f.s of the radii normalized with the Burgers’ radius Rb = 2(ν/σ0)

1/2 of an
equilibrium vortex stretched by the local σ0. They collapse well and the maximum
probability is at R = Rb, supporting the view that the filaments can be modelled as
equilibrium Burgers’ vortices (Jiménez 1992).

A different way of displaying the statistics is figure 4, which contains joint p.d.f.s of
stretching and radius and of radius and azimuthal velocity. In each of them we have
given two probability isolines for each Reynolds number, one corresponding to the
central part of the p.d.f., and another to the outer tails. Figure 4(a) confirms that the
p.d.f.s cluster around the local Burgers’ radius, which is given as the dashed curve.
As the Reynolds number increases, some of the filaments are subject to stronger
stretching, and their radii are particularly close to the Burgers’ limit. Note that the
lower edge of the p2 = 10−3 isoline is in all cases very near the grid resolution
∆x/η = π/2. There is little doubt that, were it not for this numerical limitation, these
rightmost tails of the joint p.d.f.s would follow still more closely the Burgers’ line, and
this is confirmed by the kmaxη = 4 simulations at the two lowest Reynolds numbers
(not shown).

The mean stretching, which is mostly associated with points inside the p2 = 10−1

isolines in figure 4(a), scales with ω′ independently of Reλ, and there is a fairly large
probability of finding points along the filaments at which the strain is compressive. It
was shown by Jiménez & Wray (1994a, b) that the statistics of the stretching along the
filament axes are essentially the same as in the bulk of the flow field. The filaments
are not linked to locations where the stretching is particularly high, and the stretching
that they feel is the background turbulent flow.

Figure 4(b) addresses the scaling of the azimuthal velocity with the large-scale
velocity fluctuation u′. This is inconsistent with the Kolmogorov scaling, which re-

quires that the velocity differences across lengths of O(η) should be O(u′Re
−1/2
λ ).

The unconditional p.d.f.s in figure 3(d) leave the possibility that the large azimuthal
velocities might be associated with points where the filaments are locally thick, but
4(b) shows that this is not the case. The azimuthal velocity is bounded above by
approximately 2.5u′, independently of Reλ, and this limit is reached by the filaments
with the narrowest radii.

Since, for a given circulation, the velocity difference across a stretched vortex
increases with decreasing radius, it is not surprising that the thinner filaments contain
the highest azimuthal velocities, but that the velocity across a dissipative length scale
should be bounded by a large-scale quantity such as u′ needs explanation. One was
offered by Jiménez & Wray (1994a) and VJO who argued that there is a natural
limit beyond which a Burgers’ vortex of finite length cannot be stretched before
it induces axial currents which counteract the applied strain. It turns out that this
mechanism limits the maximum azimuthal velocity to be of the same order as the
straining velocity differences applied along the vortex axes. Thus while vorticity can
be amplified by stretching, velocity cannot and, if the maximum velocity difference
available for stretching the filaments is O(u′), their maximum azimuthal velocity
cannot increase beyond it. The argument also implies that filaments whose azimuthal
velocity is O(u′) should be long enough that the velocity difference between their
end-points is of that order, which usually requires lengths of the order of the integral
scale. Lengths of that magnitude have been reported in all the observations of strong
filaments, and are confirmed below.

The statistics discussed in the previous paragraphs should be interpreted with care
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λ . (b) Global

maximum of the axial stretching along the detected filaments for the different Reλ. The triangles

are data for kmaxη = 2. The dashed line has slope Re
1/2
λ . The open circles in both figures are data

for kmaxη = 4.

in view of the considerations discussed in § 3 on the variable size of the samples.
Since the tracking algorithm identifies first the strongest filaments, which include
the most stretched segments with the narrowest radii and the strongest vorticities,
only those extreme values should be trusted independently of the sample size, while
mean velocities and radii may respectively be expected to decrease and increase if the
sample is made much larger.

In figure 5(a) we give the minimum and maximum values of the axial vorticity and
azimuthal velocity, measured at a fixed probability level. These are the two points
at which each p.d.f. in figure 3 falls below a given probability. The maxima scale

as umax ∼ u′ and ωmax ∼ ω′Re
1/2
λ , as discussed above, but the minima do not. The

two dashed lines in the figure are proportional to Re
−1/2
λ , and imply that ωmin ∼ ω′

and umin ∼ u′Re
−1/2
λ . Those are the Kolmogorov scalings for features of size η, and

represent the points at which the filaments merge into the background vorticity field.
The fact that our analysis is able to identify the regular scalings of the weaker parts of
the structures increases our confidence on the anomalous ones found for the stronger
ones.

The minimum vortex radius has not been included in this analysis, since figure 4(a)
implies that it may be contaminated by the size of the grid, and suggests that it is
better to plot the maximum axial stretching as a function of Reλ, and to assume that
the minimum radius is proportional to the corresponding Burgers’ limit. This is done
in figure 5(b), with the result, to be discussed later, that

σmax ∼ ω′Re1/2
λ , (4.1)

implying that

Rmin ∼ ηRe−1/4
λ . (4.2)

Note that all these figures include data from the kmaxη = 4 simulations, which are
within the statistical uncertainty of the lower resolution ones.
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4.2. Filament length

Another quantity of interest is the length of individual filaments. It is related to their
lifetime because a filament can only become coherent over a length ` if its lifetime
is at least `/u`, where u` is its velocity scale. Visual observation of experiments
by Douady, Couder & Brachet (1991) and numerical simulations by Vincent &
Menneguzzi (1991) and JWSR suggest that the characteristic length is of the order
of the integral length of the flow, but there has been little systematic study of its
Reynolds number dependence. The implied lifetimes are of the order of the integral
eddy-turnover time, in agreement with Douady et al. (1991), Villasenor & Vincent
(1992) and Villermaux, Sixou & Gagne (1995).

The definition of the length depends on the observation procedure. Our vortex
tracker abandons a filament either when it intersects a previously identified one or
when its axial vorticity falls below ω′. The resulting average length is of the order
of a few integral lengths, with a slightly decreasing trend as the Reynolds number
increases (figure 6a). The probability distribution of filament lengths (not shown) is
roughly exponential, with standard deviations of the order of 0.6–0.7 of the mean.

A more objective length can be defined in terms of the autocorrelation function of
some filament property ξ, expressed in terms of the arc length s,

Qξ(s) = 〈ξ(s′ + s)ξ(s′)〉/〈ξ2(s′)〉, (4.3)

where ξ has been normalized so that 〈ξ〉 = 0. The length is then defined as

LQ =

∫ s0

0

Qξ(s) ds, (4.4)

where s0 is the point where the autocorrelation function first goes negative, and it
is displayed in figure 6(b) for three different filament properties. It is clear that they
separate in two groups. The length based on the axial stretching scales with the
Kolmogorov scale, while those based on actual filament properties scale with the

Taylor microscale ηRe
1/2
λ .

The correlation length of the stretching is comparable to the diameter of the
filaments, and to the Kolmogorov length. Since the latter is also the characteristic
correlation length of the velocity gradients over the whole flow, this is consistent with
the previous conclusion that the stretching felt by the filaments is the background
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strain of the flow, and that they are natural consequences of this background. Note
that the filaments in the decaying field tend to be somewhat longer than in the forced
ones.

That the Taylor microscale should appear in this context is not surprising. Consider
a vortex line of length L� λ and define its unit tangent t and normal n, and a length
element d`. The line integral of the vorticity stretching due to the velocity gradient
tensor, S , can be written as∫ b

a

t · S · t d` = u · t|ba −
∫ b

a

ρ−1u · n d`, (4.5)

where ρ is the local radius of curvature and u is the flow velocity. We have seen
that the mean value of the stretching is O(ω′), so that the integral on the left
of the equation is O(ω′L). It is known experimentally that the velocity probability
distributions in turbulence are free from intermittency effects, in the sense that higher
Reλ do not correspond to wider velocity tails (Anselmet et al. 1984), so that the order
of magnitude of the velocities in the right-hand side of (4.5) is at most u′. This implies
that the radius of curvature of the line has to be ρ = O(u′/ω′) = O(λ) for both sides
of the equation to be of the same order, and that vortex lines have to be geometrically
complex over distances much longer than λ.

4.3. Filament volume

Most of the strong vorticity in the flow field is in the form of filaments. This, which
has been repeatedly reported from visual analyses of simulations (see references in
§ 1), is confirmed by the present tracking data, and serves as an independent check of
the thoroughness of the search.

Consider a short filament segment of length d`. The volume filled by vorticity
weaker than ω is dV = 2πr(ω) dr d`, and it follows from (3.1) that its contribution
to the global probability distribution of the vorticity magnitude over a volume VT is

1

VT

dV

dω
=

1

VT

πR2

ω
d`, if ω 6 ω0. (4.6)

The contribution to the global p.d.f. from a set of filaments can then be expressed as
a Lebesgue integral

p̃(ω) =
π

VTω

∫
ω0>ω

R2 d`(ω0), (4.7)

which can be computed from the filament sample and compared to the p.d.f.s obtained
from the whole flow. Figure 7(a) presents the global p.d.f.s, with their characteristic
Reynolds-number-dependent intermittent tails. In figure 7(b), they are compared at
two Reynolds numbers to the contribution (4.7) from the detected filaments. The
tails coincide in both cases, showing that essentially all the strong vorticity has been
captured in the form of filaments. There are no adjustable parameters in this fit,
which holds for all the other simulations.

The abscissae in figure 7(b) have been normalized with the vorticity scale of the

filaments, ωf = ω′Re
1/2
λ , and it is interesting that, even if the tails of the probability

distributions have different slopes when they are normalized with ω′, as in figure 7(a),
they are more or less parallel to each other in figure 7(b). They can be collapsed using
the new normalization if, in addition, each p.d.f. is divided by the empirical volume
fraction V (Reλ) = p(ω/ωf > 0.5). The p.d.f. can then be written as

p(ω) = ω−1
f V (Reλ) p0(ω/ωf), (4.8)
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where p0 is universal in the tail region. The collapse is shown in figure 8(a), and the
volume fractions are given as open circles in figure 8(b). They vary as Re−2

λ , as already
found by Jiménez & Wray (1994b) from filament data. Contrary to the stretched
exponential behaviour of the tails of the p.d.f.s of the longitudinal velocity gradients
(Kailasnath, Sreenivasan & Stolovitzky 1992; Tabeling et al. 1996), the tails of our
vorticity p.d.f.s are well represented, beyond ω/ωf ≈ 0.3, by

p0(ξ) ≈ 1.93× 104 exp(−14.4 ξ). (4.9)

Note that there is no contradiction in that the p.d.f. of the vorticity behaves differently
from those of the velocity gradients. Most of the contribution of a vortex to the
statistics of the gradients comes from points outside its core, where the gradients
are still large but where the vorticity is already zero. It is actually possible to form
realistic statistics for the gradients using vortices with uniform cores, for which the
vorticity p.d.f. would be two delta functions. This is true both for the longitudinal and
for the transverse gradients, as was shown in a two-dimensional example by Jiménez
(1996).

What fraction of the filaments is detected by the tracker can be estimated by
comparing V (Reλ) with the volumes obtained by integrating the filament contribution
(4.7). The latter are given in the figure as open triangles, and decline somewhat
faster with Reλ, reflecting the difficulty of processing the larger files. The effect
on the averages should be moderate. It follows from (4.9) that the difference in
volume fractions detected by the tracker at the highest and lowest Reynolds numbers
correspond to a vorticity difference of approximately 0.05ωf .

If we use the scaling of the vortex radii as η, which is proportional to LεRe
−3/2
λ ,

and combine it with the estimate of their volume fraction as Re−2
λ we obtain that the

total length of the filaments contained in a fluid volume of the order of the cube of
the integral length increases as Reλ. This is confirmed by the relatively good collapse
of the different curves in figure 2, which are scaled in that way, and means that the
filaments become more prevalent at high Reynolds numbers, even if their volume
shrinks because they become thinner. The best fit to figure 2 is that the total length
per unit volume of filaments which contain somewhere an axial vorticity larger than
ω0,max is

L ∼ L−2
ε Reλ exp(−8ω0,max/ωf). (4.10)

5. Discussion
We have shown that, at the Reynolds numbers of our simulations, the strong

coherent vortices identified by our tracker have radii which scale as the Kolmogorov
length, and azimuthal velocities which are of the order of the large-scale velocity
fluctuations in the flow u′. The average axial stretching, σ, scales like ω′. These
scalings confirm those found by JWSR and by the later simulations and laboratory
experiments cited in the introduction.

Since the Kolmogorov scale η = (ν/ω′)1/2 is proportional to the Burgers’ viscous
length for strains of O(ω′), the scalings of σ and R are consistent with a simple model
in which the filaments are created as Burgers’ dissipative structures by a turbulent
background in which, according to the classical Kolmogorov picture of the flow, the
velocity gradients are proportional to ω′.

Cadot et al. (1995) also find coherent vortices whose internal velocities scale with u′,
and whose lengths are O(Lε), in agreement with our tracking results. Their experiments
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cannot determine the radii directly, but the authors suggest, on the basis of theoretical
arguments and of incomplete measurements, that they should be of the order of the
Taylor microscale λ. Their argument is that λ is the Burger’s limit for the large-scale
strain u′/Lε, which is the only possible coherent strain over the observed lengths. They
also predict that there should be a range of smaller filaments, each of them driven by
the strongest possible coherent strain over their lengths, whose most intense members
would have both radii and lengths of O(η).

Our observations disagree with the last conclusion. We find vortices whose radius is
O(η), but whose length is O(Lε). Even if within them we find a shorter axial correlation
length for the radius and for the vorticity which is O(λ), it is still longer than the
Kolmogorov scale. Moreover, our observations disagree with a key assumption of
Cadot et al. (1995), which is that the axial stretching must be coherent along the
length of the vortex. We find correlation lengths for the stretching which are shorter,
O(η), than the vortex length, comparable to the scale of the velocity gradients over
the bulk of the flow. Such stretching would be felt by the vortices as spatially
uncorrelated. Moreover, since the filaments sweep through these small structures in
times comparable to their own rotation times, they would also see the stretching as
effectively uncorrelated in time.

It was demonstrated in VJO and Verzicco & Jiménez (1997) that the axial length
scales of the stretching strain and of the vortex properties are decoupled in inhomo-
geneous vortices by axial Kelvin waves driven by the variable pressure along their
axes. They showed that effectively infinitely-long vortices can be maintained by axially
inhomogeneous, locally compressive, strains, even in the limiting case in which the
mean stretching is zero. The resulting radii are of the order of the Burgers’ radius
corresponding to the r.m.s. of the stretching, rather than to its mean. We have shown
above that the axial strain along the filaments is compressive along a substantial per-
centage of its length but that, where it is extensive, the vortex radii scale as in Burgers’
vortices. Axial modulations of the vorticity of the filaments, resembling waves, were
observed by Villasenor & Vincent (1992). The decoupling between the axial scales of
the vortices and that of the stretching provides a mechanism by which long vortices
can be maintained with diameters of order η, which is the Burgers’ limit for the r.m.s.
strain of O(ω′). It also suggests that we are not observing the vortices at their time
of formation, but only after they have become strong enough to decouple from the
background.

Another important consequence of the argument in VJO is that the azimuthal
velocity of a vortex produced by an inhomogeneous stretching is not limited by the
magnitude of the stretching, but by the maximum velocity difference along its axis.
If a vortex is subject to a local stretching which would drive it to a radius which is
too thin, or to an azimuthal velocity which is too high, it bursts instead of pinching.
Thus if the maximum large-scale velocity difference in the flow is O(u′), no vortex can
be strained beyond the stage at which its azimuthal velocity becomes of that order.
This is consistent with the velocity scaling mentioned above, and with the lack of any
Reynolds number trend in the high end of the azimuthal velocity p.d.f.s in figures
3(d) and 4(b).

Scalings different from the ones discussed here have been proposed on theoretical
grounds by other investigators. It has already been noted in JWSR that the dependence
of the mean value of ω0/ω

′ on the Reynolds number could be consistent, over the

range of our simulations, with powers different from Re
1/2
λ . Rasmussen (1995) noted

that they could actually be better fitted by Re
1/3
λ , and proposed a model to explain
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that dependence which is based on a helicity cascade. It is clear from a consideration
of the bounds in figure 5(a) and from inspection of figure 3(c), that most of the

deviations of the mean vorticity from the Re
1/2
λ scaling are due to the cutoff of the

p.d.f.s below ω′, and that the ‘intense’ parts of the distributions scale better than the
means. Over the range of Reynolds numbers of the present simulations, the difference

between Re
1/3
λ and Re

1/2
λ would amount to a decrease of ω0/ω

′ Re
1/2
λ by a factor of

1.3, which is only barely consistent with the slight increase observed, for example,
in the maximum values in figure 5(a). Moreover, as mentioned in the introduction,
the scalings laws R ∼ η and u0 ∼ u′ have recently been extended experimentally to

Reλ ≈ 800, and they imply a Re
1/2
λ scaling for the vorticity. The drift of Re

1/3
λ over

that range would be a factor of 1.7, which is inconsistent with the data. There is,
however, nothing in our data to preclude this, or other, cascading mechanism from
being responsible for vortices weaker than the ones studied here.

5.1. The coherent cascade

Although the most probable axial strain felt by the filaments is O(ω′), independently
of Reλ, it was shown in figure 5(b) that its maximum value increases with Reynolds

number as ω′Re
1/2
λ . This is of the order of the axial vorticity and, if it is interpreted

as evidence of self-stretching, it would imply that the radius of curvature of a self-
stretching vortex is of the order of its core radius, which is the correct scaling
for the instabilities of high Reynolds number vortex cores under triaxial strains
(Saffman 1992). Another interpretation would be that the high stretchings are due to
interactions between filaments, but it is shown in the Appendix that the probability
of intersection is too low to account for the observations.

It follows from the previous scalings that the internal Reynolds number of the

observed vortices is γ/ν ≈ 20Re
1/2
λ , and it has already been observed in JWSR that

it is unlikely that they would remain stable for high Reλ. The previous observation
suggests that they do not, and that the highest observed strains are due to the initial
stages of their instability. That these high strains are only found in the extreme
tails of the distributions suggests that the unstable regions are confined to a small
fraction of the total length, presumably due to the weak magnitude of the background
perturbations compared to the vorticity of the filaments.

Assuming that the radii, R2, of the self-stretched segments scale like the Burg-

ers’ limit corresponding to the stretching that they feel, O(ω′Re
1/2
λ ), and that their

azimuthal velocities are bounded, as before, by their driving velocity, ω1η ∼ u′, it
follows that

R2 ∼ ηRe−1/4
λ , γ2/ν ∼ Re1/4

λ . (5.1)

These pinched segments have lengths which are of the order of the radius of the
parent vortex, `2 ∼ R1 ∼ η, which is the scale over which the instability develops. For
large Reλ such a vortex segment is still elongated and its internal Reynolds number
is still high. It would again become unstable along sections with lengths of the order
of its own radius, along which the self-stretching would be σ3 ∼ u′/R2 ∼ ω′Re3/4, and
the radius would be thinner. This leads to a hierarchy of self-stretching instabilities
in which two consecutive levels are related by

σn ∼ u′/Rn−1, Rn ∼ (ν/σn)
1/2 ∼ (νRn−1/u

′)1/2, `n ∼ Rn−1, (5.2)

and which asymptotes to

R∞ ∼ η0 = ν/u′ ∼ ηRe−1/2
λ , (5.3)
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σ∞ ∼ u′2/ν ∼ ω′Reλ, (5.4)

γ∞/ν ∼ 1. (5.5)

`∞ = R∞ ∼ η0. (5.6)

This defines an absolute inner limit, η0, for the radii of the intermittent structures
which is below the Kolmogorov scale, and which is reached on small subsets of
the flow through a coherent cascade of instabilities, instead of through the classical
space-filling Kolmogorov mechanism.

Note that, because ∆u ∼ γ/R and the circulation is conserved during stretching, a
vortex for which ∆u = O(u′) cannot pinch as a single unit. It has to break into several
braids, each of which carries part of the original circulation. This braiding process
has been observed by Cadot et al. (1995), and a possible mechanism is suggested
by the structure of strong vortices subject to inhomogeneous straining in VJO (see
figures 11–14 in that paper). When a vortex is strained beyond the limit at which its
azimuthal velocity would become larger than the driving axial velocity difference, it
becomes hollow and the vorticity is expelled into a cylindrical sheet whose thickness is
the Burgers’ length of the driving strain. This sheet is unstable to Kelvin–Helmholtz
waves and should break into longitudinal vortices, each of which would have the
correct radius and circulation for (5.2).

That the cascade could occasionally extend beyond the Kolmogorov scale has
already been noted by Paladin & Vulpiani (1987) and later by Frisch & Vergassola
(1991), in the context of the multifractal model of turbulence (Parisi & Frisch 1985).
The latter describes turbulence as a collection of interpenetrating components, on
each of which the velocity difference over a distance R behaves as

∆u(R)/u′ ∼ (R/Lε)
α as R → 0. (5.7)

The successive vortex instabilities of the coherent cascade described in (5.2)–(5.6)
define a component in which the velocity difference does not change as the scale
shrinks, and whose singularity exponent is therefore α = 0. The set is defined at each
length scale by the union of all the vortex segments which become unstable and pinch
to the next level of (5.2). If we define the end of any α-component as the scale ηα at
which the Reynolds number R∆u/ν reaches unity, we obtain

ηα =
(
νLαε/u

′)1/(α+1)
. (5.8)

The classical Kolmogorov scale, η1/3, corresponds to the space-filling energy cascade
for which α = 1/3, while (5.3) corresponds to α = 0.

There is no reason for the cascading process to start with filaments of the order
of the Kolmogorov scale. Any object with a vorticity higher than the background
would tend to become coherent, and should generically evolve into a cylindrical
vortex, not necessarily slender, which is one of the few known stable solutions of
the Euler equations (Vincent & Meneguzzi 1994). The axial waves described above
would then connect these precursors into longer filaments (see figure 4 in VJO), as has
been observed by Villasenor & Vincent (1992) and suggested by JWSR on theoretical
grounds.

It is interesting that the largest coherent structures that can form in this way are
vortices with ∆u ∼ u′ and vorticities just above ω′, which would therefore have radii
of order R0 ∼ u′/ω′ ∼ λ. They may correspond to the O(λ) vortices observed by
Cadot et al. (1995). If we take them to be the initial structures in the hierarchy (5.2),
the next radius would be R1 ∼ η, and the precursors of the filaments described in
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Figure 9. Schematic representation of the types of turbulent structures in terms of the velocity
differences that they contain and of their transverse length scale. (a) Only structures within the
triangle λη0K , for which the characteristic vorticity is larger than ω′ and the Reynolds number is
large enough, can be expected to be coherent. This region is enlarged in (b).

this paper would correspond to secondary instabilities of primary O(λ) structures, as
originally proposed by Saffman (1968). This would be consistent with the observation
that the filaments with R = O(η) have an internal axial length scale of O(λ), and is
essentially a qualitative restatement of the argument in (4.5).

Note that the process described up to now gives only an upper bound for the
intensity of the coherent vortices, as limited by the requirement that the azimuthal
velocity should not exceed O(u′). There is no need for a vortex to have velocities
of that order to survive, and we can imagine vortices that first become coherent
with ω ≈ ω′ but with ∆u < u′. Their initial radii would be ∆u/ω′. If their internal
Reynolds numbers are large, they would cascade through a sequence of instabilities
as in (5.2)–(5.6), but with ∆u substituted for u′. It is easy to see that the first stage of
the cascade always generates vortices with R ∼ η, and that these weaker hierarchies
accumulate to vortices of unit elongation and Reynolds number whose radius is
R∞(∆u) = ν/∆u > η0. The cascade described above is just the strongest of this family
of cascades, and it is therefore the most easily observed, but all of them generate

filaments with peak vorticities in the range ω′ 6 ω0 6 ω′Re
1/2
λ , and contribute to

the anomalous tails of the vorticity distributions. There is in principle the possibility
of a certain amount of exchange between different members of the family, such as
when a high-velocity vortex interacts with a low-velocity one and strains it into a
higher-velocity class. We have seen that such interactions are rare, at least once the
vortices reach R ∼ O(η). Vice versa, an imperfect braiding might convert part of a
high-velocity vortex to a lower velocity. A more widespread mechanism is probably the
vortex connection process mentioned above in which short precursors are collected
into longer filaments. In that process fluid is entrained into the end points of an
existing vortex segment by the low pressure in its core, and the ambient vorticity is
organized into a coherent bundle. The result is the promotion of incoherent fluid to
a high ∆u-class. Otherwise each cascade is limited by the VJO straining argument to
the maximum velocity difference with which it starts its coherent life.

Structures can then be classified in terms of the ∆u–R diagram in figure 9(a). To
the right of the line AKη0 the Reynolds number is small and viscous dissipation
dominates. Turbulence exists only to the left of that line. To the left of λK the
vorticity of the structures ∆u/R is lower than the r.m.s. vorticity ω′, and no coherence
is possible. The line LεK is in this turbulent region and represents the space-filling
Kolmogorov energy cascade ∆u ∼ R1/3. Point K is the classical Kolmogorov scale.
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Figure 10. Sketch of the velocity–length classification of the turbulent structures, showing the
α-components of the multifractal model as dotted lines, and the coherent cascades as solid arrows.
The dashed arrows represent the fluid capture mechanism by which strong vortices grow axially, as
discussed in the text. The shaded region is the one accessible to our vortex tracker, and corresponds
roughly to figure 4(b).

Coherent structures exist in the triangle λη0K , which would be the seat of intermittency
and which is enlarged in figure 9(b). Radii in this sketch decrease from left to right,
while the driving strains do the opposite. The oblique dashed lines represent constant
core vorticities, which increase towards the top right corner. The paths of three typical
coherent vortices during the cascade are represented by arrows. They are created at
the ω0 = ω′ line and migrate horizontally towards increasing vorticity with constant
velocity increments, until they reach the viscous limit along the line η0K .

There is a difficulty with the previous arguments. The cascade in (5.2) assumes
that viscosity is the only diffusion process limiting the radius of the vortices, which is
only true for laminar flow, while we are proposing that the structures are internally
turbulent at least over part of their length. A possible explanation is that vortices form
as turbulent structures, which would have larger radii, but that their cores eventually
laminarize under the effect of their own rotation. It is known that rotation inhibits
energy transfer in homogeneous turbulence (Cambon & Jacquin 1989), and Zeman
(1994) has shown that the effect should be active whenever the imposed rotation
is comparable with or higher than the inverse eddy-turnover time of the turbulent
scales. For the strong vortices that concern us here, whose vorticity is at least O(ω′),
that would be true for all the scales. Relaminarization by strong vorticity is a well-
known effect in the trailing vortices of aircraft, whose Reynolds numbers are much
higher than those involved here (Bandyopadhyay, Stead & Ash 1991; Zeman 1985),
and Andreotti et al. (1997) have observed a large decrease in the turbulent intensity
in the core of a stationary vortex within a turbulent flow. The observed filaments
would then be those that have persisted for times long enough to develop laminar
cores.

5.2. Multifractal versus coherent cascades

We are now in a position to compare the coherent ∆u-cascades described in the
previous section with the classical description of intermittency in the multifractal
model. Consider the sketch in figure 10, which is a version of the one in figure 9.
The multifractal α-sets (5.7) lie along the dotted lines radiating from Lε, with each
slope corresponding to a different value of α. These sets are kinematic, and there is
no implication of causality among their points. The multifractal model starts from
the observation that there are no preferred length or velocity scales within the inertial
range, and deduces from it that each α-set is a self-similar fractal (Parisi & Frisch
1985). The volume of a set is then proportional to R3−D , where D(α) is interpreted as
a fractal dimension. The multifractal spectrum, which relates D(α) to the singularity
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exponent, has been measured in the inertial range for several flows and is summarized
by Sreenivasan (1991).

In the multifractal model, each α-set reaches the viscous line Kη0 at its local
Kolmogorov scale (5.8). In our model of coherent cascades, all the α-sets for which
α 6 1/3 reach first the line Kλ where ω ≈ ω′. They then become organized into
filaments and cascade at constant ∆u towards the viscous limit. These coherent
cascades are represented in the figure as horizontal solid arrows, which imply causality.
The only cascade which is also an α-set is ∆u ≈ u′, for which α = 0.

We have seen that the coherent vortices are viscous objects, even if their Reynolds
numbers are large. This, together with the constant internal velocity of each cascade,
defines time and length scales, and invalidates the self-similarity assumption of the
multifractal model. The overall picture is then an incoherent inertial range to the
left of λK , which should be well-described by the multifractal model, and a coherent
region to its right, where the multifractal scaling does not apply. Both regions are
bounded on the right by the dissipative limit. A structure first cascades incoherently
through the inertial range, not necessarily along an α-set, and eventually, if it reaches
ω0 ≈ ω′ while its Reynolds number is still high, cascades as a filament along one of
the coherent lines. Since the Kolmogorov energy dissipation argument guarantees that
most points are concentrated on the α = 1/3 set, the previous model predicts that the
intermittent sets are relatively sparse, in qualitative agreement with our observations
in §4.3 of the total volume occupied by the coherent vortices. We will see below that
this simple picture has to be modified slightly to account quantitatively for those
observations.

The shaded area in figure 10 contains the structures studied in this paper, and
corresponds to the roughly triangular region in figure 4(b), although in a different
orientation.

The two vertical borders of this region, which would be horizontal in figure 4(b),
represent limitations of our tracker and of the resolution of the simulations, and the
diagonal along λK , which corresponds to the diagonal limit in the p.d.f.s in figure
4(b), is also to a certain extent artificial, since the tracker rejects filaments whose
maximum vorticity is below ω′.

It is then clear that the statistics in figures 3 and 4 are biased towards intense,
narrow filaments, and that the scalings have been chosen so as to collapse the parts
of the p.d.f.s which represent narrow radii, high velocities and intense vorticities,
roughly corresponding to the neighbourhood of the point labelled as η1/3 in figure
10. The limitations of our technique and of our simulations make it difficult to draw
conclusions on the statistical distribution of structures over the rest of the coherence
triangle λη0K .

This reflects our inability to study inertial length scales. Although our simulations
contain a short range of approximately k−5/3 energy spectrum, none of them has an
inertial range in the classical sense that the Kolmogorov 4/5 law is satisfied (Jiménez
1997), and the problem can only be overcome by going to higher Reynolds numbers.
An examination of the experimental spectra and structure functions available in the
literature suggests that a well-developed inertial range requires at least Reλ ≈ 600
(Anselmet et al. 1984; Saddoughi & Veeravali 1994). The requirements to study the
coherent region might actually be stricter, since it only takes the last third of the
inertial range. To study the properties of possible sub-Kolmogorov coherent structures
would require high Reynolds numbers and substantially better resolutions than the
ones used here.
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5.3. Fractal dimensions

In spite of the difficulties mentioned in the previous subsection, it is tempting to
relate quantitatively our volume fraction data with the predictions of the multifractal
model. As discussed above, this can only be done for the multifractal component
α = 0. The multifractal spectrum from Sreenivasan (1991) is reproduced in figure
11(a), and gives

D(0) ≈ 0, (5.9)

which implies that the volume of the α = 0 component decreases as R3.
Obtaining fractal dimensions from our data implies estimating the total volume of

the vortices in the cascade as a function of their radii. This can be done in two ways.
Most simply we can read it directly from figure 8(b), which shows that the volume
fraction on which ω > 0.5ωf is approximately 4Re−2

λ . This, together with the good
collapse of the tails of the p.d.f.s in figure 3(d), implies that the volume containing
velocity increments of O(u′) across distances of O(η) varies in the same way.

This is inconsistent with a straight multifractal interpretation, in which the volume
filled by those regions should vary as

V (η) ∼ (η/Lε)
3−D ∼ Re−3(3−D)/2

λ ∼ Re−9/2
λ . (5.10)

The experimental variation, V ∼ Re−2
λ , would imply D(0) ≈ 5/3, which is far from the

values in figure 11(a). A different interpretation, more in agreement with our model,
is that the multifractal component α = 0 acts a source of velocity increments for the
∆u ≈ u′ coherent cascade. This happens at the point λ in figure 10, from where we
may assume as a first approximation that a fixed fraction of the volume eventually
decays into u′ vortices at R ≈ η. In this view the volume of the ∆u ≈ u′ vortices is
fixed by the multifractal model at R ≈ λ, and should scale as

V (λ) ∼ (λ/Lε)
3−D ∼ ReD−3

λ ∼ Re−3
λ . (5.11)

This is larger than (5.10), but still smaller than the observed variation Re−2
λ , which
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would now imply D(0) ≈ 1. This point is represented in figure 11(a), and is also far
from the multifractal spectrum.

We have assumed above that a fixed fraction of the volume of the structures
at the origin of a coherent cascade eventually decays along it. We will see in the
next paragraph that that assumption is inconsistent with the limited data that can
be derived from the present observations. It is however the decay model giving the
lowest possible fractal dimension for the α = 0 component, and therefore the one less
at variance with the multifractal data. Consider any other scenario in which a smaller
percentage of the structures at the point λ decays into coherent vortices with R ≈ η.
Since we know that the volume of the latter vary as Re−2

λ , that of the former would
have to vary slower with Reλ, implying an even higher fractal dimension.

We can actually estimate the volume ratio across the first step of the coherent
cascade, which carries vortices with radii O(λ) to R ∼ O(η). The characteristic
vorticities of the former are O(ω′), while those of the latter are O(ωf). We have
seen in (4.10) that the total length of the coherent vortices whose vorticity is O(ω)
decreases as exp(−8ω/ωf). It is then easy to see that the length ratio between η-
and λ-vortices is independent of Reλ, essentially as the ratio between exp(−8) and

exp(−8/Re
1/2
λ ) ≈ 1. Their volumes are then related as the square of their radii,

V1/V0 ∼ (η/λ)2 ∼ Reλ. (5.12)

This implies that V0 = V (λ) ∼ Re−1
λ , and a multifractal dimension D(0) ≈ 2.

The conclusion from this analysis is that there is more volume in the coherent
η-vortices than can be explained on the basis of the multifractal spectrum and of
the simple coherent cascades postulated in figure 10. Most of the volume present
in the vortices has to come from processes which do not imply an initial velocity
difference of O(u′). The likeliest candidate is the coalescence of short vortex segments
into longer ones, discussed in § 5.1, in which an intense short vortex grows along its
axis by drawing new vortical fluid to its low-pressure core. This would modify figures
9–10 by providing an upwards drift of the coherent cascades towards the stronger
ones, which has been included as dashed arrows in figure 10.

5.4. Observables

The description of the flow that has been developed in the previous subsections is
based on the characteristics of the limited region of the coherence triangle that is
accessible to our tracker. The existence of structures beyond that neighbourhood
can only be inferred indirectly from the present data although, during the refereeing
process of this paper, there have been two reports of organized filament-like struc-
tures with radii in the inertial range (Hosokawa, Oide & Yamamoto 1997; Porter,
Woodward & Pouquet 1998). It is interesting to examine which would be their testable
experimental consequences. At the moment, the most promising avenue seems to be
laboratory experiments, since it seems unlikely that either the Reynolds number or
the resolution of the numerical simulations will increase enough in the next few years
to permit scaling studies in the inertial range. The purpose of this subsection is to
collect in a single place a series of tests for different aspects of our model, in the hope
that experimentalists will be motivated to undertake them.

(a) Several of the quantitative observations described in this paper can be checked
experimentally. We have mentioned in the introduction that the existence of ∆u ∼ u′
structures at scales of the order of η has been confirmed experimentally up to
Reλ ≈ 800. The results in § 4.3 give information on the frequency of those structures
which, to our knowledge, has still not been checked. The prediction is that the
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probability of finding ∆u > u′/2 over separations of order 4η, should vary as 4Re−2
λ .

The same should be true for other O(1) multiples of both quantities. We have
published in Jiménez (1997) a compilation of existing p.d.f.s of velocity derivatives
which supports this behaviour, but the result is not fully convincing because the
limits of the available p.d.f.s were scaled with ω′ rather than with ωf , and because the
resolution of the experiments was not uniform in η. Belin et al. (1997) have recently

published a compilation of their own data, and favour a power of Re
−3/2
λ in the range

Reλ = 157–700. Our own replotting of their data, which were kindly made available
to us, appears to us to support our scaling, and the issue hinges on where to fit tails
which are not exactly parallel. Also, the quality of the statistics in the tails of their
p.d.f.s is not uniform with Reλ, and neither is their probe resolution. A new careful
experiment, or even a new uniform analysis of both data sets together with other
data in the literature, should clarify the discrepancy.

(b) The test of probability scaling can be extended to the next step of the coherent
cascade. In can be shown from the analysis of the p.d.f.s of the axial stretching that

in that step, in which vortices of radius R ∼ η are pinched to R ∼ ηRe−1/4
λ , the length

ratio is also approximately independent of Reλ. A representative value is

L2/L1 ≈ 0.015 for σ0/ωf > 0.05, (5.13)

which, together with the previous result, implies that the probability of finding O(u′)

velocity differences across distances of about 10ηRe
−1/4
λ , which is the Burgers’ limit

for the strain in (5.13), should be proportional to Re
−5/2
λ . Note that, because of the

numerical factors, these length scales are not significantly shorter than η for most
reasonable Reynolds numbers.

(c) Another set of results concerns the structure functions in the range of scales
within the inertial range, but below R ≈ λ. We have seen before that the existence
of strong velocity structures beyond the Kolmogorov scale is predicted by the mul-
tifractal model, as well as by ours, and it is known that this ‘multiscaling’ implies a
Reynolds number dependence of the structure functions at small separations (Frisch
& Vergassola 1991; Passot et al. 1995). The difference between the two models is that,
while the Reynolds number dependence should manifest itself below a fixed multiple
of η in the multifractal case, the threshold would depend on Reλ in ours. Consider
Sp = 〈∆up〉. It is known from multifractal theory that, for scales in which (5.7) holds,
each structure function is dominated by the α-set for which p = dD/dα (Frisch 1995,
p. 145). This set intersects the ω ∼ ω′ line at

∆u

R
∼
(
R

Lε

)α−1
u′

Lε
∼ ω′, (5.14)

Rp ∼ ηRe3/2−1/(1−α)
λ . (5.15)

Below this separation the structure function should not be expected to behave
self-similarly as a power of R. It tends to Rp ∼ η for the Kolmogorov cascade,
α = 1/3, which dominates the low-order structure functions, but approaches the
Taylor microscale for α ≈ 0, in agreement with figure 9.

(d) There is another reason for structure functions not to behave as powers at
small separations, and it results in a different limit for the self-similar behaviour. In
standard multifractal theory, the structure function at separation R is dominated by
structures of size R, but this is no longer true in the presence of structures whose
volume does not scale as a power of their size. Consider Sp for separations such that
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R � η, but small enough for their characteristic Kolmogorov velocity scale to be
much smaller than u′. The statistics for velocity increments will receive a contribution
of O(u′) whenever one of the ends of the measurement interval falls within one of
the filaments, and the probability of that happening is proportional to their volume
fraction. The contribution of the filaments to the mean is then S (f)

p ∼ u′pRe−2
λ , while

the contribution from the rest of the flow is (Sreenivasan 1991)

Sp ∼ u′p(R/Lε)ζp ∼ u′p(RRe−3/2
λ /η)ζp . (5.16)

The contribution from the filaments dominates if

Rp′ > ηRe
3/2−2/ζp
λ . (5.17)

This length is within the inertial range if ζp > 4/3 or p > 4, and tends to the integral
scale when ζp → ∞. This implies that there should an intermediate range of scales
between the dissipative and the inertial ranges in which all the structure functions
above S4 should tend to be independent of R, and that the extent of this range should
be larger for the higher moments. The multifractal spectrum in figure 11(a) would
be characteristic of the self-similar inertial range, while the isolated point would
appear when considering scales in the intermediate region. The exponents for the
two limits (5.15) and (5.17) are plotted in figure 11(b), using the scaling data from
Sreenivasan (1991). For low-order functions, the first effect dominates, but the second
scale becomes larger for p > 4. It should however be remembered that these results
refer to scaling exponents, and that the ordering of the actual limiting separations
may not be the same at any given finite Reynolds number.

In both cases there should be a Reynolds-number-dependent and order-dependent
part of the inertial range in which the power scaling of the structure functions fails,
and this effect should appear as a ‘bump’ of shallower slopes at the small-scale end
of the high-order structure functions of high Reynolds number flows.

An early attempt to check this effect experimentally was made by van de Water,
van der Vorst and van de Wetering (1991). More recently, Herweijer & van de Water
(1995) have published very high-quality structure functions which show a clear bump
near the end of the inertial range. Their conclusion is that the scale of the bump is
independent of the Reynolds number, which would support the classical multifractal
model, but it might be interesting to re-analyse their data in view of the predictions
above.

6. Conclusions
We have confirmed the scalings obtained in JWSR for the properties of the most

intense filaments in isotropic turbulence at O(η) resolution. Their radii are of the order
of a low multiple of the Kolmogorov scale and their azimuthal velocities are bounded
by about 2.5 times the r.m.s. velocity of the flow. The former is explained because
they are essentially Burgers’ vortices in equilibrium with axial stretchings which are
O(ω′), of the same order as the background strain in the flow. No specially strong
driving strains are needed to explain their origin. The stretching is inhomogeneous
along the axes, compressive in many places, and with a correlation scale of the order
of η, supporting the conclusion that it is essentially the turbulent background.

We have argued that this inhomogeneity explains the limit on the azimuthal velocity,
following the arguments in VJO. Short filaments respond to variable stretching by
developing axial pressure waves which weaken strongly stretched segments at the
expense of the compressed ones, limiting the global maximum azimuthal velocity to
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be of the same order as the total driving velocity difference, which is at most O(u′)
in a turbulent flow. Stronger vortices become hollow and decay through a braiding
instability of the resulting cylindrical vortex sheet. We have also suggested that the
same waves connect initially short filaments into the observed long ones.

These two basic scalings can be combined to explain all the other local filament

properties. In particular the axial vorticity scales as ω0 ∼ ωf = ω′Re
1/2
λ , and the

internal Reynolds number of individual filaments is γ/ν ∼ Re1/2
λ .

The last result suggests that filaments should become unstable for large Reλ, and
we have identified indirect evidence of this instability over a small fraction of the
axial length, independent of Reλ, along which the stretching is O(ωf) and the radius
is correspondingly thinner. If this is interpreted as a sign of self-stretching in the
filaments, it implies kinking on the scale of the filament radius.

Extending this argument to a hierarchy of instabilities, which would act as long
as the internal Reynolds number of the structures is large, we have shown that it
would lead to a cascade of coherent filaments, in which the velocity increments are
conserved, and whose limiting radius is η0 ≈ ν/u′. If the resulting set is interpreted
as deriving from the multifractal component for which the singularity exponent is
α = 0, its fractal dimension can be estimated as D ≈ 1, which disagrees with the
experimental result, D(0) ≈ 0, in Sreenivasan (1991).

We have argued that this coherent cascade is only the strongest within a family,
each of whose members is characterized by its own velocity scale. We have identified
a region in the ∆u–R classification of the turbulent fluctuations in which coherent
structures are possible. It is roughly triangular (figure 9), with one vertex at the
Kolmogorov scale, and the other two at ∆u ≈ u′ with R ≈ η0 and R ≈ λ. The last
point represents the thickest possible coherent filaments, which are also the ones with
the weakest vorticity, and may correspond to some of the experimental observations
by Cadot et al. (1995). This region would constitute a new scaling range, separating the
self-similar multifractal inertial range from the dissipation limit. This would explain
the observed discrepancy in the measured fractal dimensions.

We have noted that the existence of this range could be checked experimentally,
and have suggested several possible tests in § 5.4.

Another possible explanation of the discrepancy with the multifractal model is that
the objects that we observe are artifacts of our relatively low Reλ, and that we are
only observing the initial stages of the instability cascade. Although our simulations
contain a short range of approximately k−5/3 energy spectrum, none of them has an
inertial range in the classical sense that the Kolmogorov 4/5 law is satisfied (Jiménez
1997). The mean circulation of our vortices is only about γ/ν ≈ 270 at our highest
Reynolds number, and it should be remembered that most of the hierarchy proposed
in (5.2) would occur at lengths below our grid resolution. It has been reported by
Tabeling et al. (1996) that beyond Reλ ≈ 700 (γ/ν ≈ 530) the distribution of the
filament radius changes and that it becomes wider. Belin et al. (1996) also observe
that, beyond that point, the flatness factor of the longitudinal velocity gradient stops
increasing, but these observations have not been confirmed by other researchers (see
Sreenivasan & Antonia 1997). Belin et al. (1997) have recently published a re-analysis
of their data in which the transition at Reλ ≈ 700 appears as a temporary ‘pause’ in
the growth of the flatness factor, rather than as a true upper limit.

The detected length of the filaments is proportional to the integral length of the
flow Lε, but we have identified a shorter correlation length which is O(λ), although
still much longer than the correlation length of the driving strain. It may be connected
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with the origin of the filaments as instabilities of larger O(λ) structures, as part of the
coherent cascade mentioned above.

We have shown that the total volume fraction filled by filaments with axial vor-
ticities above a fixed fraction of ωf decreases as Re−2

λ , but that this corresponds
to a total length that increases as Reλ. The vorticity contained in the filaments ac-
counts for essentially all the strong vorticity in the flow above ω/ωf ≈ 0.3. Note
that this behaviour of the volume fraction limits the relevance of the filaments to
the dynamics of the flow. Since their characteristic velocities and vorticities are O(u′)

and O(ω′Re
1/2
λ ), their total energy and enstrophy (or dissipation) decrease with Reλ,

respectively as Re−2
λ and Re−1

λ . In the high Reynolds number limit, both contri-
butions become negligible. The lowest moment of the velocity gradients for which
there is a contribution of the filaments which does not vanish at large Reλ is the
fourth-order flatness, and all the higher moments are eventually dominated by them.
The effect of the coherent filaments on the different structure functions is further
discussed in §5.4. The conclusion that the filaments contribute little to the total dis-
sipation was tested directly in JWSR and has received strong support in an elegant
recent experiment by Cadot, Bonn & Douady (1998) in which the filaments were
suppressed by the addition of polymers, without any apparent effect on the energy
dissipation.

Note that this picture is different from the early structural models of turbulence
in which all the dissipation was assumed to be concentrated in the form of sheets
(Corrsin 1962) or filaments (Tennekes 1968). In the present view the filaments,
although responsible for most of the intermittency effects of the higher moments of
the velocity derivatives, are themselves responsible for only a negligible part of the
dissipation. A discussion of the differences between the two points of view can be
found in the book by Frisch (1995, § 8.9.2).

This research was supported by the Centre for Turbulence Research, and by the
Spanish CICYT under contract PB95-0159.

Appendix. Intersection probability between filaments
Assume a filament tangle of length `0L

−3
ε per unit volume. We are interested in

its probability of approaching a ‘test’ segment of length dL within a distance D.
Construct a cylinder whose axis is the test segment and whose base has area A. The
projection of the tangle on the base of the cylinder is a line which, except for geometric
factors of O(1), has length `0L

−3
ε A dL. Construct a strip of width 2D, centred on the

projection of the tangle, which has area dS ∼ 2D`0L
−3
ε A dL. The tangle intersects

the test segment if the strip contains the intersection of the test segment with the
base of the cylinder, which happens with probability dS/A. The probability of the
tangle intersecting itself is therefore proportional to D`2

0L
−3
ε and, if each intersection

perturbs the filament over a distance O(D), the final perturbed fraction of the length
would be

`1/`0 ∼ (D/`0)D`
2
0L
−3
ε = D2`0/L

3
ε. (A 1)

Since we know from the discussion in §4 that `0 ∼ LεReλ and D ∼ η ∼ LεRe−3/2
λ , the

perturbed fraction due to self-intersections of the tangle is

`1/`0 ∼ Re−2
λ , (A 2)
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which is negligible compared with the constant fraction that is found in (5.10). The
implication is that the self-stretched segments described in § 5 are due to vortex
instabilities and not to intersections.

REFERENCES

Abry, P., Fauve, S., Flandrin, P. & Laroche, C. 1994 Analysis of pressure fluctuations in swirling
turbulent flows. J. Phys. Paris II 4, 725–733.

Andreotti, B., Couder, Y., Douday, S. & Maurer, J. 1997 Experimental investigation of the
turbulence near a large-scale vortex. Euromech Colloq. 364, Carry-le-Rouet FR, June 1997. Eur.
J. Mech. B, in press.

Anselmet, F., Gagne, Y. & Hopfinger, E. J. & Antonia, R. A. 1984 High order velocity structure
functions in turbulent shear flows. J. Fluid Mech. 140, 63–89.

Bandyopadhyay, P. R., Stead, D. J. & Ash, R. L. 1991 Organised structure of a turbulent trailing
vortex. AIAA J. 29, 1627–1633.

Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.

Belin, F., Maurer, J., Tabeling, P. & Willaime, H. 1996 Observation of intense filaments in fully
developed turbulence. J. Phys. Paris II 6, 573–583.

Belin, F., Maurer, J., Tabeling, P. & Willaime, H. 1997 Velocity gradient distributions in fully
developed turbulence: experimental study. Phys. Fluids 9, 3843–3850.

Cadot, O., Bonn, D. & Douady, S. 1998 Turbulent drag reduction in a closed system: boundary
layer versus bulk effects. Phys. Fluids 10, 426–436.

Cadot, O., Douady, S. & Couder, Y. 1995 Characterisation of the low-pressure filaments in a
three-dimensional turbulent shear flow. Phys. Fluids 7, 630–646.

Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subject to rotation.
J. Fluid Mech. 202, 295–317.

Corrsin, S. 1962 Turbulent dissipation fluctuations. Phys. Fluids 5, 1301–1302.

Douady, S., Couder, Y. & Brachet, M. E. 1991 Direct observation of the intermittency of intense
vorticity filaments in turbulence. Phys. Rev. Lett. 67, 983–986.

Herweijer, J. & Water, W. van de 1995 Universal shape of scaling functions in turbulence. Phys.
Rev. Lett. 74, 4651–4654.

Hosokawa, I., Oide, S. & Yamamoto, K. 1997 Existence and significance of ‘soft worms’ in isotropic
turbulence. J. Phys. Soc. Japan 66, 2961–2964.

Frisch, U. 1995 Turbulence: a Legacy of A. N. Kolmogorov. Cambridge University Press.

Frisch, U. & Vergassola, M. 1991 A prediction of the multifractal model: the intermediate
dissipation range. Europhys. Lett. 14, 439–444.
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data set HOM02.

Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids
6, 3221–3223.

Zeman, O. 1995 The persistence of trailing vortices: A modelling approach. Phys. Fluids 7, 135–143.


